Quantifiable Biological Objectives and Flow Criteria for Aquatic and Terrestrial Species of Concern Dependent on the Delta

DFG November 2010
Selected Tables from Exhibit SWRCB-66
CSPA-307

CSPA-307

Table 15 pp. 105-107 (on following slides)

- 1 = criteria recommended for the whole month
- ½ = criteria recommended for half of the month

Table 13. DFG I	Flow Criteria	Г														CS
Category	Function	Flow (cfs)	Year													
Category			Туре	0	N	D	J	F	М	Α	M	J	J	Α	S	
Delta Outflow	Increase quantity and quality of habitat for delta smelt promotes variability of fall flows and habitat conditions in above normal and wet water year types; may result in improved conditions for delta smelt	7100 (X ₂ ≤ 81 km) to	AN	1	1										1	(
		12400 (X ₂ ≤ 74 km) W	W	•											ľ	
	Promote increased abundance for longfin smelt, starry flounder, zooplankton, American shad, Crangon franciscorum (bay shrimp), and other desirable estuarine species	11400 – 29200 (X ₂ between 64 km and 75 km)	All			1	1	1	1	1	1	1				
River Increase juvenile fall-run Chinook salmon outmigration survival and abundance and provide conditions that will generally produce positive population growth in most years and eventually achieve the doubling goal		At Vernalis:					1	1	1	1	1	1/2				
	1500 (Base) 5500 (Pulse) (4/15-5/15) (Total 7000)	С							1/2	1/2						
	At Vernalis:					1	1	1	1	1	1/2				С	
		2125 (Base) 4875 (Pulse) (4/11-5/20) (Total 7000)	D							1/2	1/2					
		At Vernalis:	Vernalis:				1	1	1	1	1	1/2				С
		2258 (Base) 6242 (Pulse) (4/6-5/25) (Total 8500)	BN							1	1					
		At Vernalis:					1	1	1	1	1	1/2				
		4339 (Base) 5661 (Pulse) (4/1-5/30) (Total 10000)	AN							1	1					
		At Vernalis:					1	1	1	1	1	1/2				
		6315 (Base) 8685 (Pulse)	W						1	1	1	1				

Category	Function	Flow (cfs)	i eai	WOTHING											
			Туре	0	N	D	J	F	М	Α	M	J	J	Α	S
		(Total 15000)													
	Minimum adult Chinook salmon attraction flows to decrease straying, increase DO, reduce temperatures, and improve olfactory homing fidelity	At Vernalis: pulse flow: 1000 ¹⁰	All	1											
Eastside Streams	Mokelumne River flows: Juvenile salmon outmigration	1500 ¹¹	All						1	1					
	Eastside stream minimum flows	1060 ¹²	All	1	1	1	1	1	1	1	1	1	1	1	1
Sacramento River	Increase juvenile salmon outmigration survival and abundance for fall-run Chinook salmon. Increases juvenile salmon outmigration survival	At Wilkins Slough: pulse flow: 20,000 cfs for 7 days ¹³	All		1	1	1								
	Increase juvenile salmon outmigration survival by reducing diversion into Georgiana Slough and the central Delta	At Freeport: 13,000 - 17,000 ¹⁴	All		1	1	1	1	1	1	1	1			
	Promote juvenile fall-run salmon outmigration	At Rio Vista: 20000 – 30000								1	1	1			
Floodplain	Inundation of off-channel areas improves spawning and recruitment of Sacramento splittail.	≥ 30 day floodplain inundation ¹⁵	AN W				1	1	1	1	1				
critical year following 11 Mokelumne Riv months (Mar-Apr) in numbers, flows of the critical year following the cri	additional 28 TAF pulse/attraction flowing a critical year. Time period based on ver salmon pulse flows. Such flows aid s for 8 of 10 years (Henson et al. 2007). Ver this level are seen to exist during 63% of minimum flows. Such flows would created	real-time monito salmon migration Vhile the Mokelu of the reported ye	ring and det s from and i mne River is ars historica	ermin nto the not s illy.	ed by e low epar	y CalF er Mo ated fi	ed O kelun rom th	p's g nne f ne re	roup River st of	r. Pu the	east	side	strea	ams i	n the

Flow (cfs)

Function

Months

Eastside stream minimum flows. Such flows would create floodplain habitat, improving local water quality in the Delta and aiding fish migrations in

streams. This is estimated here preliminarily as the 25th percentile unimpaired flows for all 12 months for 9 of 10 years (Moyle et al. 2007). ¹³ Pulse flows should coincide with storm events producing unimpaired flows until monitoring indicates that majority of smolts have moved downstrea 14 Positive flows are peeded downstream of confluence with Georgiana Slough while invenile calmon are present

Category	Function	Flow (ofc)	Year	Months											
Category		Flow (cfs)	Туре	0	N	D	J	F	М	Α	М	J	J	Α	S
	Salmon smolts also benefit from increased food in floodplain habitats.														
Old and Middle Rivers Reduces straying and improve homing fidelity for San Joaquin basin adult salmon Reduces entrainment of larval / juvenile delta smelt, longfin smelt, and provide benefits to other desirable species If FMWT index for longfin smelt is low, then OMR should be more positive than 0 or -1500 (depending on prior year population) to reduce entrainment losses when abundance is low. Needed to reduce entrainment of	> -1,500 cfs 14-day running average	C, D						1	1	1	1				
	> 0 or -1,500 cfs, 14-day running average, when FMWT index for longfin smelt is less than 500, or greater than 500, respectively	C, D							1	1					
	adult delta smelt, longfin smelt, and other species; less negative flows may be warranted during periods when significant portions of the	> -5,000 cfs 14-day running average	All			1	1	1	1	1	1	1			
adult smelt population migrate into the south or central Delta. Reduced risk of juvenile salmon entrainment and straying to central Delta Improve survival of San Joaquin River juvenile salmon emigrating down the San Joaquin River and improve subsequent escapement Increase survival of outmigrating smolts, decrease diversion of smolts into central Delta where survival is low	> -2,500 cfs, 14-day running average, when salmon smolts are in the Delta	All		1	1	1	1	1	1	1	1				
	Increase survival of outmigrating smolts, decrease diversion of smolts into central Delta where	At Jersey Point: Positive flows when salmon are in the Delta	All		1	1	1	1	1	1	1	1			